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Summary. Direct mechanical experiments and analyses support the view that the red 
cell membrane is a composite with a solid structural matrix, which can behave as either 
a viscoelastic or viscoplastic material. 

In the last decade, numerous  techniques have been developed to probe 
the membrane.  Each technique tends to be specific to a different componen t  
of the membrane  and leads to a specific view of membrane  architecture. 
For  example, the rapid translational diffusion of large protein "marke r s "  
in the plane of the membrane  (Frye & Edidin, 1970; Edidin & Fambrough ,  
1973; Liebman & Entine, 1974; Poo & Cone, 1974; Edidin, Zagynsky & 
Lardner,  1976) indicates that  membrane  lipid is a two-dimensional  "fluid 
mosaic"  (Singer & Nicolson, 1972). Particular studies with human  red cell 
membrane  also indicate that  the lipid is fluid (Rudy & Gitler, 1972; Aloni, 
Shinitzky & Livne, 1974; Solomon,  1974). However, we have developed 
mechanical techniques for studying the human  red cell membrane  and are 
led to a very different view of membrane  structure (Hochmuth  & Mohan-  
das, 1972; Evans, 1973a and b; Hochmuth ,  Mohandas  & Blackshear, 1973; 
Evans & Hochmuth ,  1976a and b). We observe that the membrane  behaves 
as a solid material  in its response to mechanical  forces. Below a yield 
condition, the membrane  is a highly deformable viscoelastic material;  i.e., 
a material capable of large recoverable, elastic deformations with internal 
viscous energy dissipation. Above the yield condition, it begins to flow in 
a viscous, plastic manner  that results in irreversible deformation.  Four 
separate material constants  characterize this behavior;  a shear modulus  
of elasticity, a shear viscosity (in the viscoelastic domain),  a yield "shear", 
and a plastic shear viscosity. These observations suppor t  the view that the 
membrane  is a composi te  material, and that our  mechanical  techniques 
study the part of the membrane which behaves like an elastic or plastic solid 
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just as other techniques probe the fluid (lipid) component  of the membrane. 
We hypothesize that the membrane's solid-like character and the four 
material constants reflect the behavior of peripheral membrane proteins 
which form a structural matrix on the cytoplasmic surface as depicted in 
Fig. 1. Thus, a study of the intrinsic material constants is a direct study of 
the structural proteins in situ. 

The concept that there exists a structural membrane component  is 
not new. In their paper on the isolation of "spectrin", Marchesi, Steers, 
Marchesi & Tillack (1970) state that "... it is evident that spectrin is indeed 
an important structural component,  since the intact ghosts become frag- 
mented during the removal of spectrin, and lose a coating of filamentous 
material normally present on the inner surface of the membrane ...". 
However, once it has been postulated that a structural membrane com- 
ponent exists and is responsible for the membrane's solid-like behavior, it 
is necessary to measure the material properties of the structural compo- 
nent, preferably in situ and preferably by direct mechanical methods. This 
we have done. 

Assumptions and Approach 

We treat the red cell membrane as a two-dimensional nearly incom- 
pressible material which is isotropic in the plane of the membrane (Evans, 
1973a and b; Skalak, Tozeren, Zarda & Chien, 1973). Two-dimensional 
incompressibility implies that when the membrane is deformed under the 
action of an applied force, it does so at essentially constant surface area 
(Hochmuth & Mohandas, 1972). (As Evans, Waugh & Melnik have shown 
recently (1976), only small area increases on the order of 1% occur when 
large isotropic tensions are imposed on the membrane.) We assume that 
the red cell interior is in an amorphous fluid state (Cokelet & Meiselman, 
1968). Therefore, the equilibrium mechanical properties of the red cell are 
derived completely from the membrane. 

Our approach is to separate the influence of cell geometry (an ex- 
trinsic factor) from measurements of the intrinsic material properties of 
the cell membrane. The intrinsic material behavior is the deformation and 
rate of deformation response of "infinitesimal" membrane elements to 
forces applied to the element, expressed by a constitutive relation between 
the resultants (forces distributed per unit width on the element sides) and 
the deformation and rate of deformation. Because large deformations 
occur we observe deformation and rate of deformation by measuring 
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Fig. 1. Symbolic representation of red cell membrane as a solid-liquid composite. The struc- 
tural "backbone" from which the membrane obtains its solid material properties is shown as 
a random matrix on the underside (cytoplasmic side) of the lipid bilayer-"integral" protein 
matrix. The lipid bilayer-integral protein (e.g., fluid) matrix component of the composite has 
been illustrated previously by Singer and Nicholson (1972, Fig. 3). Also, it should be noted 
that Bretscher (1973) has suggested external carbohydrate residues of glycoproteins could 

form a "lattice" over the cell surface 

changes in an element's dimensions (extension ratios), with the element 

oriented in a principal axes system where only extension and constriction 

of these dimensions occur. Each aspect of observed red cell membrane 

behavior will be represented: hyperelastic solid (highly deformable with 

total recovery); viscoelastic solid (highly deformable with total recovery 

and with internal, viscous energy dissipation); viscoplastic solid (the 
maximum elastic limit has been exceeded and the material flows irre- 
coverably with viscous energy dissipation). In addition, the experiments 
which have been used to study this behavior will be described. 

Membrane Hyperelasticity 

The red cell membrane is able to undergo large elastic deformations 
at constant surface area (Hochmuth  & Mohandas,  1972). The slow elonga- 
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Fig. 2. The deformation of a two-dimensional, incompressible square material element into a 
rectangular strip. T~ is the uniaxial membrane tension, 2 x is the extension ratio, and )~ is the 
rate of extension, in the x direction. The extension ratio in the y direction, 2y, is equal to )~2 

tion of a two-dimensional, incompressible membrane material element 
(Fig. 2) by the action of an in-plane uniaxial tension, Tx, can be represented 
by a first-order tension-deformation law (Evans, 1973b) 

T~ = - ~  (;~ - ;~; ~) ( ~ ) 

where T~ is the membrane  tension acting in the x direction, )ox is the ex- 
tension ratio (final length divided by initial length) and g is an elastic 
constant which is a shear modulus of elasticity. 

As Eq. 1 demonstrates, in order to measure an elastic constant, a 
known tension (force/width) must be exerted on the membrane,  and the 
extension ratio (length/original length) must be measured, or vice-versa. 
The direct experiment on a membrane strip as illustrated in Fig. 2 is 
impossible to perform (because of the small sizes and forces involved). 
Consequently, we use two "micro-force" techniques, shown in Fig. 3, to 
deform intact red cells in a well-defined way: (1) a portion of cell membrane 
is sucked into a small micropipette (internal diameter < 1 gm) such that a 
decrease in pressure causes the " tongue"  of the membrane  to extend 
further into the pipette (Evans, 1973b; Evans & LaCelle, 1975); (2) cells 
adhering to the surface of a parallel-plate flow channel are elongated by a 
fluid shear force (Hochmuth  & Mohandas,  1972; Hochmuth  et al., 1973). 
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Fig. 3. Photographs of videotape recordings of the two micro-force experiments used in deter- 
mining red cell membrane mechanical properties. (a) and (b) show a single cell in the micro- 
pipette suction experiment. (c) and (d) show a single cell in the fluid shear deformation experi- 
ment. (a) and (c) show the cell in its undeformed, biconcave shape, while (b) and (d) show it in 

its deformed state. The cell diameters are about 8 gm 

Evans (1973b) has analyzed both  the deformat ion  produced  by micro- 

pipette suction of m e m b r a n e  " t o n g u e s "  and the fluid shear deformat ion  

of po in t -a t tached  red cells using the hyperelast ic const i tut ive relation, 

Eq. 1, for the de format ion  of a membrane  "s t r ip" .  In both  cases, the 

material  was first order  (described as in Eq. 1) and the intrinsic material 

elastic constant I~ obta ined  from each exper iment  was the same, with a 
value of approximate ly  10 -5 N / m  (10 2 dyne/cm).  Subsequent  studies 

have conf i rmed this value for the cons tan t  

/~ = 1 x 10- 5 N / m  (1 x 10 2 dyne/cm).  
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This value for # demonstrates the minute force required to deform the 
elastic strip (Fig. 2) from a 1 gm square to a 1/2 x 2 p.m rectangle (2~ = 2). 
Thus, from Eq. 1, T~ = 1.9 x 10- 5 N/m and the force, F x, acting along the 
1/2 gm side is Fx=9 x 10 -~2 N (e.g., 9 x 10 -13 Kg). 

Membrane ldscoelasticit y 

Now, suppose we take the strip shown in Fig. 2 and rapidly extend it. 
During rapid elongation, the measured membrane tension in the x- 
direction at any particular value of 2 x would exceed the value predicted by 
Eq. 2, because the instantaneous tension in the membrane depends on 
both the deformation and the rate of deformation. The material exhibits 
viscoelastic behavior when subjected to rapid deformations; Eq. 1 must 
include a "viscous" term, proportional to the rate of deformation. To 
first order, Eq. 1 is modified as follows (Evans & Hochmuth,  1976a) 

# 2 2) '~X T x = ~ - ( 2 x - 2 2  +4r/ ~ (2) 

where the "do t"  above 2x denotes the ordinary derivative with respect to 
time. The constant of proportionality, r/, is a two-dimensional shear 
viscosity or "surface viscosity" intrinsic to the membrane in the visco- 
elastic region. 

A further simplification of Eq. 1 illustrates the time dependence. The 
strip (Fig. 2) is slowly extended to a specific extension ratio ~.x and then 
released (Tx is set equal to zero). Direct integration of Eq. (2) (with Tx=0) 
predicts the decrease in the extension ratio 2x with time t. The time re- 
quired for the strip to "relax" to a length which is just half way between 
its original (stretched) and final (unstretched) length is 

to. s "~ t//# (3) 

for ),x ~ 2. Since the value for # is known from our elasticity experiments, 
we can measure a value for to. 5 and use Eq. 3 to calculate the surface 
viscosity t/. 

In the actual experimental study of the viscoelastic relaxation of red 
cell membrane, a projection or " b u m p "  from a human red blood cell is 
sucked into a micropipette (with internal diameter < 1 gm) and held there 
for a few seconds. Then the cell is gently, but rapidly, expelled from the 
end of the pipette and the time required for the projection to relax to half 
of its initial length (the length along the axis of the pipette) is measured. 
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As above, we call this time the "to.5 ". Our analysis of the bump relaxation 
(Evans & Hochmuth, 1976a) indicates that for a wide range of initial 
bump lengths, 

to. s = 3 t//#. (4) 

The measured value for to.s is about 0.3 sec (Evans & Hochmuth, 1976a). 
Therefore, Eq. 4 gives the shear viscosity parameter, 

I/~ 1 x 10- 6 N-sec/m (1 x 10- 3 poise, cm). 

Membrane ldscoplasticity 

In this third example, we will produce a tension in the membrane 
which is sufficient to permanently, i.e., plastically, deform it; the membrane 
will not return to its original shape when the tension is removed. There- 
fore, at least two intrinsic membrane constants are required to describe 
the phenomenon of plastic deformation (Bingham, 1922): (1) a yield shear; 
(2) a "plastic" shear viscosity. The applied force resultants that create 
membrane shear must exceed the yield shear before plastic deformation 
can take place. Once the yield shear is exceeded, the "plastic viscosity" 
characterizes the rate at which the membrane undergoes irreversible 
deformation. This classical two-parameter theory has been used to 
describe the rate of deformation of a three-dimensional viscoplastic 
material in simple shear (Bingham, 1922; Prager, 1961). Recently, we 
specialized the general theory of Hohenemser and Prager (Prager, 1961) to 
the plastic deformation of a two-dimensional membrane. The first order 
"constitutive equation" is given by 

,~x=0, T~< To, 

T~> To, 
(s) 

where T~ is the maximum shear resultant in the membrane and t/p and T o 
are the intrinsic material cons tants -  the plastic shear viscosity and yield 
shear, respectively. When the maximum shear resultant is less than the 
yield shear, the rate of plastic deformation is zero, i.e., the material behaves 
recoverably. When the shear resultant exceeds the yield shear, the rate of 
plastic deformation is proportional to the difference between the shear 
resultant and the yield shear, T o . The membrane shear resultant is simply 
the mean deviation between the principal tensions. For uniaxial tension, 
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L 
Ts- 2 (6) 

Eqs. 5 and 6 specify the plastic deformation of the membrane strip in 
Fig. 2: 

L 
2~ =0,  2 

T~ To =2 r/p )~x Tx 
2 2xx' 2 

- - < T O ,  

- - > T o .  

(7) 

In this third experiment, we slowly extend the element to the point 
where, upon removal of Tx, the rectangular strip no longer returns to its 
initial square shape (the membrane commences plastic deformation). We 
have reached the maximum elastic extension ratio, 2x=),~. The initial 
part of the experiment gives two independent ways to obtain a value for 
the yield shear To: (1) direct measurement of the value of 7; when plastic 
flow begins (T o = T~ = Tff2); (2) calculate the yield shear from Eq. 1 using 
the maximum elastic extension ratio 2~, and T o = Tff2. After determining 
the yield shear, we increase the membrane tension Tx to some value in 
excess of 2 T o and observe the time dependent plastic deformation of the 
strip. Integration of Eq. 7 gives an exponential growth of the element 
with time: 

=exp ~ T~'- 2 To t}. ) (8) 

The "plastic" surface viscosity governs the logarithmic growth of the 
element extension vs. time for specific membrane tensions. 

Both micro-force techniques have been applied to the study of mem- 
brane viscoplasticity. Either technique can be used to determine a value 
for To. However, a value for qp can only be determined from the rate 
of plastic deformation of point-attached red cells deformed by an extra- 
cellular fluid shear stress (Fig. 4). 

Evans and LaCelle (1975) reported that departure from elastic behavior 
appeared rapidly for maximum extension ratios greater than approxi- 
mately 3:1 in micropipette suction experiments. Thus, we can estimate 
the yield shear from Eq. 1 by noting that when 2x=2x =3, T~ =2 T o and 

To =4(22 -222)--~2.0 x 10 -5 N/m (2.0 x 10 -2 dyne/cm). (9) 
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Fig. 4. A red cell membrane tether "plastically" pulled from a point-attached red cell by a 
fluid shear force. (See Hochmuth et al. (1973) for procedure.) This scanning electronmicrograph 
was kindly furnished by Dr. J.R. Williamson, Department of Pathology, Washington Uni- 

versity 

H o c h m u t h  et al. (1973) and Williamson, Shanahan & H o c h m u t h  (1975) 
have measured the plastic growth of "micro te thers"  (membrane filaments 
or strands) pulled from point-a t tached red cells under  the action of fluid 
shear stresses (Fig. 4). The "cri t ical" fluid shear stress required to hold 
the tether at a fixed length has been measured to be approximately 
0.15 N / m  2. The yield shear, To, is calculated from the measurement  of 
the critical fluid shear stress using a simple "force balance" on the red 
cell and the tether: 

Fce l l  : f t e t h e r  : "[7crit �9 A = T x �9 2 rc r, = 2 To" 2 rcrt, 
o r  

To = "gcrit A / 4  rc r, (1 O) 

where F denotes force, zcrit is the critical extracellular fluid shear stress, 
A is the cell area in contact  with the flowing fluid (approximately 70 ~tm 2) 
and r t is the tether radius (2re rt is the circumference) corresponding to 
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the structural material that resists shear deformation. From observation, 
the outer tether diameter is approximately 0.1 gm. However, it is probable 
that the material undergoing plastic deformation is located on the cyto- 
plasmic surface of the tether (membrane) and a reasonable value for r t 
would be 0.045 gm. Thus, Eq. 10 gives 

T O = 1.8 x 10-5 N/m (1.8 x 10-2 dyne/cm). (11) 

for %~it = 0.15 N/m 2, A = 7 0  gm 2, and r z =0.045 gm. The values for To deter- 
mined by the micropipette suction experiment and the tether experiment 
are in agreement (compare Eq. 9 with Eq. 11). 

We have performed an analysis (Evans & Hochmuth,  1976b) of 
tether growth experiments (Hochmuth et al., 1973; Williamson et al., 1975) 
to determine a value for t/p (the viscoplastic viscosity), using the visco- 
plastic constitutive relation (Eq. 5). Briefly, the results of the analysis 

show that 

-- Tcrit~ Gt (12) 
t lv-  8~ "L- 

where L is the tether growth rate and Gt is a "tether growth parameter" 
(from analysis), which is only a function of the ratio of the fluid shear 
stress, -c, (imposed on the cell during tether growth) to the critical fluid 
shear stress, "c,it. The tether radius does not enter into the calculation 
of r/p. From the data of Hochmuth  et al. (1973): 

3 x 10 -8_<L-<2 x 10 -7 m/sec 

when 
1.3 =< Z/'Corit < 2.3. 

For this range of z/%rit, the theoretical result (Evans & Hochmuth,  1976 b) 

is 0.7 _-< Gt < 4.9. Thus, 

Gt /L= constant ~- 2.4 x 107 sec/m. 

The substitution of this value for Gt/L into Eq. 12 along with ~:crit= 
0.15 N/m 2 and A = 70 gm 2 yields 

qp = 1 x 10-s N-sec/m (10 -z poise- cm). 

Discussion 

Measured values of the four intrinsic material constants of the human 
red cell membrane are summarized in Table 1. Now, what do the values 
in Table 1 tell us about the membrane composition ? 
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Cons ider  the four mater ial  cons tants  for the lipid bi layer c o m p o n e n t  

of the membrane .  First  of all, the shear modu lus  /~ and yield shear T o 

are zero for a lipid bilayer. It is a l iquid in two d imens ions  and can not  

sustain any m e m b r a n e  shear resul tant  wi thou t  " f low" .  The lipid bi layer  
resists area di lat ion ( isotropic tension) because  of the interracial free 

energy required to " e x p o s e "  the h y d r o p h o b i c  interior  of the membrane .  

The lipid bi layer  also opposes  rate of  de fo rmat ion  and has surface viscosity. 

The publ ished values for lipid viscosity (see, for example,  Edidin, 1974) 

are given be tween  1 and 10 poise (0.1 and 1 N-sec/m2).  Mul t ip ly ing  these 

number s  by a m e m b r a n e  thickness of 10-8  m provides  a " p s e u d o "  prop-  

erty convers ion  to give surface viscosities of order  10-  9 _ 10-  8 N-sec /m - 

two to four orders  of  magn i tude  less than the values for the surface 

viscosity of red cell m e m b r a n e  given in Table  1. However ,  there is no 
inconsis tency be tween  the measured ,  lipid bi layer characteris t ics  and the 

red cell m e m b r a n e  proper t ies  presented  in Table  1. Our  exper iments  assess 

the sum total of the m e m b r a n e ' s  mechanica l  behavior .  Clearly, we are 

investigating a s t ructural  c o m p o n e n t  or  "mat r ix" .  F r o m  the relative values 

of mater ial  propert ies ,  it is appa ren t  that  the lipid bi layer is s imply "a long  

for the r ide"  when the m e m b r a n e  is de formed;  the lipid bi layer  acts like 

a two-d imens iona l  " l iquid  sealer"  for this " m a t r i x "  as shown in Fig. 1. 

Thus,  our  measuremen t s  are specific to the s t ructural  c o m p o n e n t  of the 

intact  red cell m e m b r a n e  and give a way  of investigating this c o m p o n e n t  
in situ. 

Table 1. Summary of values for intrinsic material constants for human red cell membrane in 
shear at room temperature" 

Shear modulus Shear viscosity Yield shear: Shear viscosity 
of elasticity in the elastic T o(N/m) in the plastic 

(N/m) domain: domain: 
r/(N-sec/m) t/p (N-sec/m) 

Micropipette 10 5 (1, 2) u 10 -6 (5) b 2 • 10 .5 (6) b (not applicable) 
Suction 
Fluid shear 10 5 (1, 3, 4) b (not applicable) 2 x 10 -s (6) b 1 x 10 -s (6, 7) b 
Deformation 

a The references in which the values appeared are given in parenthesis and footnoted below. 
~Note that a shear modulus was given previously in the form of a three-dimensional modulus 
(Hochmuth&Mohandas, 1972; Hochmuth et al., 1973) with a value of 104dyne/cm 2 
(103 N/m 2) obtained by dividing the two-dimensional value of 10-SN/m by an assumed 
membrane thickness of 10 8 m.] 
b (1) Evans (1973b), (2) Evans & LaCelle (1975), (3) Hochmuth & Mohandas (1972), (4) Hoch- 
muth et al. (1973), (5) Evans & Hochmuth (1976a), (6) Evans & Hochmuth (1976b), (7) William- 
son et al. (1975). 
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