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Summary. Direct mechanical experiments and analyses support the view that the red
cell membrane is a composite with a solid structural matrix, which can behave as either
a viscoelastic or viscoplastic material.

In the last decade, numerous techniques have been developed to probe
the membrane. Each technique tends to be specific to a different component
of the membrane and leads to a specific view of membrane architecture.
For example, the rapid translational diffusion of large protein “markers”
in the plane of the membrane (Frye & Edidin, 1970; Edidin & Fambrough,
1973; Liebman & Entine, 1974; Poo & Cone, 1974; Edidin, Zagynsky &
Lardner, 1976) indicates that membrane lipid is a two-dimensional “fluid
mosaic” (Singer & Nicolson, 1972). Particular studies with human red cell
membrane also indicate that the lipid is fluid (Rudy & Gitler, 1972; Aloni,
Shinitzky & Livne, 1974; Solomon, 1974). However, we have developed
mechanical techniques for studying the human red cell membrane and are
led to a very different view of membrane structure (Hochmuth & Mohan-
das, 1972; Evans, 1973a and b; Hochmuth, Mohandas & Blackshear, 1973;
Evans & Hochmuth, 1976a and b). We observe that the membrane behaves
as a solid material in its response to mechanical forces. Below a yield
condition, the membrane is a highly deformable viscoelastic material; i.e.,
a material capable of large recoverable, elastic deformations with internal
viscous energy dissipation. Above the yield condition, it begins to flow in
a viscous, plastic manner that results in irreversible deformation. Four
separate material constants characterize this behavior; a shear modulus
of elasticity, a shear viscosity (in the viscoelastic domain), a yield “shear”,
and a plastic shear viscosity. These observations support the view that the
membrane is a composite material, and that our mechanical techniques

_study the part of the membrane which behaves like an elastic or plastic solid
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just as other techniques probe the fluid (lipid) component of the membrane.
We hypothesize that the membrane’s solid-like character and the four
material constants reflect the behavior of peripheral membrane proteins
which form a structural matrix on the cytoplasmic surface as depicted in
Fig. 1. Thus, a study of the intrinsic material constants is a direct study of
the structural proteins in situ.

The concept that there exists a structural membrane component is
not new. In their paper on the isolation of “spectrin”, Marchesi, Steers,
Marchesi & Tillack (1970) state that “... it is evident that spectrin is indeed
an important structural component, since the intact ghosts become frag-
mented during the removal of spectrin, and lose a coating of filamentous
material normally present on the inner surface of the membrane ...”.
However, once it has been postulated that a structural membrane com-
ponent exists and is responsible for the membrane’s solid-like behavior, it
is necessary to measure the material properties of the structural compo-
nent, preferably in situ and preferably by direct mechanical methods. This

we have done.

Assumptions and Approach

We treat the red cell membrane as a two-dimensional nearly incom-
pressible material which is isotropic in the plane of the membrane (Evans,
1973a and b; Skalak, Tozeren, Zarda & Chien, 1973). Two-dimensional
incompressibility implies that when the membrane is deformed under the
action of an applied force, it does so at essentially constant surface area
(Hochmuth & Mohandas, 1972). (As Evans, Waugh & Melnik have shown
recently (1976), only small area increases on the order of 1%, occur when
large isotropic tensions are imposed on the membrane.) We assume that
the red cell interior is in an amorphous fluid state (Cokelet & Meiselman,
1968). Therefore, the equilibrium mechanical properties of the red cell are
derived completely from the membrane.

Our approach is to separate the influence of cell geometry (an ex-
trinsic factor) from measurements of the intrinsic material properties of
the cell membrane. The intrinsic material behavior is the deformation and
rate of deformation response of “infinitesimal” membrane elements to
forces applied to the element, expressed by a constitutive relation between
the resultants (forces distributed per unit width on the element sides) and
the deformation and rate of deformation. Because large deformations
occur we observe deformation and rate of deformation by measuring



Red Cell Membrane Model 353

Fig. 1. Symbolic representation of red cell membrane as a solid-liquid composite. The struc-

tural “backbone” from which the membrane obtains its solid material properties is shown as

a random matrix on the underside (cytoplasmic side) of the lipid bilayer-“integral” protein

matrix. The lipid bilayer-integral protein (e.g., fluid) matrix component of the composite has

been illustrated previously by Singer and Nicholson (1972, Fig. 3). Also, it should be noted

that Bretscher (1973) has suggested external carbohydrate residues of glycoproteins could
form a “lattice” over the cell surface

changes in an element’s dimensions (extension ratios), with the element
oriented in a principal axes system where only extension and constriction
of these dimensions occur. Each aspect of observed red cell membrane
behavior will be represented: hyperelastic solid (highly deformable with
total recovery); viscoelastic solid (highly deformable with total recovery
and with internal, viscous energy dissipation); viscoplastic solid (the
maximum elastic limit has been exceeded and the material flows irre-
coverably with viscous energy dissipation). In addition, the experiments
which have been used to study this behavior will be described.

Membrane Hyperelasticity

The red cell membrane is able to undergo large elastic deformations
at constant surface area (Hochmuth & Mohandas, 1972). The slow elonga-
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Fig. 2. The deformation of a two-dimensional, incompressible square material element into a
rectangular strip. 7, is the uniaxial membrane tension, 1, is the extension ratio, and /_ is the
rate of extension, in the x direction. The extension ratio in the y direction, A, is equal to 1!

tion of a two-dimensional, incompressible membrane material element
(Fig. 2) by the action of an in-plane uniaxial tension, T, can be represented
by a first-order tension-deformation law (Evans, 1973b)

L=4 (=75 M)

where T, is the membrane tension acting in the x direction, A, is the ex-
tension ratio (final length divided by initial length) and u is an elastic
constant which is a shear modulus of elasticity.

As Eq.1 demonstrates, in order to measure an elastic constant, a
known tension (force/width) must be exerted on the membrane, and the
extension ratio (length/original length) must be measured, or vice-versa.
The direct experiment on a membrane strip as illustrated in Fig. 2 is
impossible to perform (because of the small sizes and forces involved).
Consequently, we use two “micro-force” techniques, shown in Fig. 3, to
deform intact red cells in a well-defined way: (1) a portion of cell membrane
1s sucked into a small micropipette (internal diameter <1 pm) such that a
decrease in pressure causes the “tongue” of the membrane to extend
further into the pipette (Evans, 1973b; Evans & LaCelle, 1975); (2) cells
adhering to the surface of a paraliel-plate flow channel are elongated by a
fluid shear force (Hochmuth & Mohandas, 1972; Hochmuth et al., 1973).
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Fig. 3. Photographs of videotape recordings of the two micro-force experiments used in deter-

mining red cell membrane mechanical properties. (a) and (b) show a single cell in the micro-

pipette suction experiment. (c) and () show a single cell in the fluid shear deformation experi-

ment. (@) and (c) show the cell in its undeformed, biconcave shape, while (b) and (d) show it in
its deformed state. The cell diameters are about 8 um

Evans (1973b) has analyzed both the deformation produced by micro-
pipette suction of membrane “tongues” and the fluid shear deformation
of point-attached red cells using the hyperelastic constitutive relation,
Eq.1, for the deformation of a membrane “strip”. In both cases, the
material was first order (described as in Eq. 1) and the intrinsic material
elastic constant y obtained from each experiment was the same, with a
value of approximately 107> N/m (10~ 2 dyne/cm). Subsequent studies
have confirmed this value for the constant

u=1x10">N/m (1 x10 2 dyne/cm).
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This value for y demonstrates the minute force required to deform the
elastic strip (Fig. 2) from a 1 um square to a 1/2 x 2 um rectangle (4, =2).
Thus, from Eq. 1, T,=1.9 x 1073 N/m and the force, F,, acting along the
12 uym side is F,.=9 x 10712 N (e.g., 9 x 10713 Kg).

Membrane Viscoelasticity

Now, suppose we take the strip shown in Fig. 2 and rapidly extend it.
During rapid elongation, the measured membrane tension in the x-
direction at any particular value of 1, would exceed the value predicted by
Eq. 2, because the instantaneous tension in the membrane depends on
both the deformation and the rate of deformation. The material exhibits
viscoelastic behavior when subjected to rapid deformations; Eq. 1 must
include a “viscous” term, proportional to the rate of deformation. To
first order, Eq. 1 is modified as follows (Evans & Hochmuth, 1976a)

_ K2 402 Ay
7;_2 ()“x lx )+4’7 ix (2)

where the “dot” above 1, denotes the ordinary derivative with respect to
time. The constant of proportionality, #, is a two-dimensional shear
viscosity or “surface viscosity” intrinsic to the membrane in the visco-
elastic region.

A further simplification of Eq.1 illustrates the time dependence. The
strip (Fig. 2) is slowly extended to a specific extension ratio A, and then
released (T, is set equal to zero). Direct integration of Eq. (2) (with T,=0)
predicts the decrease in the extension ratio /A, with time f. The time re-
quired for the strip to “relax” to a length which is just half way between
its original (stretched) and final (unstretched) length is

lo.s~N/H (3)

for 2, ~2. Since the value for u is known from our elasticity experiments,
we can measure a value for ¢, ; and use Eq.3 to calculate the surface
viscosity #.

In the actual experimental study of the viscoelastic relaxation of red
cell membrane, a projection or “bump” from a human red blood cell is
sucked into a micropipette (with internal diameter <1 pm) and held there
for a few seconds. Then the cell is gently, but rapidly, expelled from the
end of the pipette and the time required for the projection to relax to half
of its initial length (the length along the axis of the pipette) is measured.
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As above, we call this time the “z, 5. Our analysis of the bump relaxation
(Evans & Hochmuth, 19764) indicates that for a wide range of initial
bump lengths,

to.s=3n/u. 4

The measured value for ¢, 5 is about 0.3 sec (Evans & Hochmuth, 1976a).
Therefore, Eq. 4 gives the shear viscosity parameter,

n~1x10"°N-sec/m (1 x 1072 poise - cm).

Membrane Viscoplasticity

In this third example, we will produce a tension in the membrane
which is sufficient to permanently, i.e., plastically, deform it; the membrane
will not return to its original shape when the tension is removed. There-
fore, at least two intrinsic membrane constants are required to describe
the phenomenon of plastic deformation (Bingham, 1922): (1) a yield shear;
(2) a “plastic” shear viscosity. The applied force resultants that create
membrane shear must exceed the yield shear before plastic deformation
can take place. Once the yield shear is exceeded, the “plastic viscosity”
characterizes the rate at which the membrane undergoes irreversible
deformation. This classical two-parameter theory has been used to
describe the rate of deformation of a three-dimensional viscoplastic
material in simple shear (Bingham, 1922; Prager, 1961). Recently, we
specialized the general theory of Hohenemser and Prager (Prager, 1961) to
the plastic deformation of a two-dimensional membrane. The first order
“constitutive equation” is given by

A=0, T,<T,

T-T,=2n, %5, T>T, ®)

where T is the maximum shear resultant in the membrane and 7, and T,
are the intrinsic material constants —the plastic shear viscosity and yield
shear, respectively. When the maximum shear resultant is less than the
yield shear, the rate of plastic deformation is zero, i.e., the material behaves
recoverably. When the shear resultant exceeds the yield shear, the rate of
plastic deformation is proportional to the difference between the shear
resultant and the yield shear, T,. The membrane shear resultant is simply
the mean deviation between the principal tensions. For uniaxial tension,
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T,

X

Ts=—2~. (6)

Egs. 5 and 6 specify the plastic deformation of the membrane strip in
Fig. 2:

I
/1x=0, ) <’I(’), (7)
: ZO

In this third experiment, we slowly extend the element to the point
where, upon removal of T, the rectangular strip no longer returns to its
initial square shape (the membrane commences plastic deformation). We
have reached the maximum elastic extension ratio, A =1,. The initial
part of the experiment gives two independent ways to obtain a value for
the yield shear Ty: (1) direct measurement of the value of 7, when plastic
flow begins (T, =T, = T,/2); (2) calculate the yield shear from Eq. 1 using
the maximum elastic extension ratio A_, and T, =T,/2. After determining
the yield shear, we increase the membrane tension T, to some value in
excess of 2T, and observe the time dependent plastic deformation of the
strip. Integration of Eq.7 gives an exponential growth of the element

with time:
~ —27T
A /A =exp {(TLA'%) t}. (8)

p

The “plastic” surface viscosity governs the logarithmic growth of the
element extension vs. time for specific membrane tensions.

Both micro-force techniques have been applied to the study of mem-
brane viscoplasticity. Either technique can be used to determine a value
for 1,. However, a value for 7, can only be determined from the rate
of plastic deformation of point-attached red cells deformed by an extra-
cellular fluid shear stress (Fig. 4).

Evans and LaCelle (1975) reported that departure from elastic behavior
appeared rapidly for maximum extension ratios greater than approxi-
mately 3:1 in micropipette suction experiments. Thus, we can estimate
the yield shear from Eq.1 by noting that when A =1 =3, T,=2T, and

T, :% (A2 —2:2)~2.0%107° N/m (2.0 x 10~ 2 dyne/cm).  (9)
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Fig. 4. A red cell membrane tether “plastically” pulled from a point-attached red cell by a

fluid shear force. (See Hochmuth et al. (1973) for procedure.) This scanning electronmicrograph

was kindly furnished by Dr. J.R. Williamson, Department of Pathology, Washington Uni-
versity

Hochmuth et al. (1973) and Williamson, Shanahan & Hochmuth (1975)
have measured the plastic growth of “microtethers” (membrane filaments
or strands) pulled from point-attached red cells under the action of fluid
shear stresses (Fig.4). The “critical” fluid shear stress required to hold
the tether at a fixed length has been measured to be approximately
0.15N/m?. The yield shear, T, is calculated from the measurement of
the critical fluid shear stress using a simple “force balance” on the red
cell and the tether:

E:elle;ether:Tcrit'Az’Ec' 2n I"t=2T6 -2n I,
or
To=7tc A/, (10)

where F denotes force, 1., is the critical extracellular fluid shear stress,
A 1s the cell area in contact with the flowing fluid (approximately 70 pm?)
and r, is the tether radius (2zr is the circumference) corresponding to
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the structural material that resists shear deformation. From observation,
the outer tether diameter is approximately 0.1 um. However, it is probable
that the material undergoing plastic deformation is located on the cyto-
plasmic surface of the tether (membrane) and a reasonable value for r,
would be 0.045 um. Thus, Eq. 10 gives

To=18x10">N/m (1.8 x 10~ 2 dyne/cm). (11)

for 7,,;,=0.15 N/m?, 4 =70 pm?, and r, =0.045 pm. The values for T; deter-
mined by the micropipette suction experiment and the tether experiment
are in agreement (compare Eq.9 with Eq. 11).

We have performed an analysis (Evans & Hochmuth, 1976b) of
tether growth experiments (Hochmuth et al., 1973; Williamson et al., 1975)
to determine a value for #, (the viscoplastic viscosity), using the visco-
plastic constitutive relation (Eq.5). Briefly, the results of the analysis
show that
_TcmA G,

= 2
=57 (12)

where L is the tether growth rate and G, is a “tether growth parameter”
(from analysis), which is only a function of the ratio of the fluid shear
stress, 7, (imposed on the cell during tether growth) to the critical fluid
shear stress, 7.,,. The tether radius does not enter into the calculation
of 7, From the data of Hochmuth et al. (1973):

3x 1078 <L <2x10"7 m/sec
when
1.3 1/1,,, 2.3,

For this range of 7/, the theoretical result (Evans & Hochmuth, 1976 5)
is 0.7 G,£4.9. Thus,

G,/L =constant~2.4 x 107 sec/m.

The substitution of this value for G,/L into Eq.12 along with 7. =
0.15N/m? and 4 =70 pm? yields

n,=1x107%N-sec/m (10~ ? poise - cm).

Discussion

Measured values of the four intrinsic material constants of the human
red cell membrane are summarized in Table 1. Now, what do the values
in Table 1 tell us about the membrane composition?
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Consider the four material constants for the lipid bilayer component
of the membrane. First of all, the shear modulus y and yield shear T
are zero for a lipid bilayer. It is a liquid in two dimensions and can not
sustain any membrane shear resultant without “flow”. The lipid bilayer
resists area dilation (isotropic tension) because of the interfacial free
energy required to “expose” the hydrophobic interior of the membrane.
The lipid bilayer also opposes rate of deformation and has surface viscosity.
The published values for lipid viscosity (see, for example, Edidin, 1974)
are given between 1 and 10 poise (0.1 and 1 N-sec/m?). Multiplying these
numbers by a membrane thickness of 10~8 m provides a “pseudo” prop-
erty conversion to give surface viscosities of order 107° —10~8 N-sec/m —
two to four orders of magnitude less than the values for the surface
viscosity of red cell membrane given in Table 1. However, there is no
inconsistency between the measured, lipid bilayer characteristics and the
red cell membrane properties presented in Table 1. Our experiments assess
the sum total of the membrane’s mechanical behavior. Clearly, we are
investigating a structural component or “matrix”. From the relative values
of material properties, it is apparent that the lipid bilayer is simply “along
for the ride” when the membrane is deformed; the lipid bilayer acts like
a two-dimensional “liquid sealer” for this “matrix” as shown in Fig. 1.
Thus, our measurements are specific to the structural component of the
intact red cell membrane and give a way of investigating this component
in situ.

Table 1. Summary of values for intrinsic material constants for human red cell membrane in
shear at room temperature®

Shear modulus  Shear viscosity Yield shear:  Shear viscosity

of elasticity in the clastic To(N/m) in the plastic

w{N/m) domain: domain:

1 (N-sec/m) 1, (N-sec/m)

Micropipette 1073 (1,2)® 10-% (5)° 2x107% (6)® (not applicable)
Suction
Fluid shear 1075 (1,3,4®  (not applicable) 2x107% (6)° 1x1073 (6,7)°
Deformation

* The references in which the values appeared are given in parenthesis and footnoted below.
[Note that a shear modulus was given previously in the form of a three-dimensional modulus
(Hochmuth & Mohandas, 1972; Hochmuth etal, 1973) with a value of 10* dyne/cm?
(10° N/m?) obtained by dividing the two-dimensional value of 10~5N/m by an assumed
membrane thickness of 10~ m.]}

® (1) Evans (1973b), (2) Evans & LaCelle (1975), (3) Hochmuth & Mohandas (1972), (4) Hoch-
muth et al. (1973), (5) Evans & Hochmuth (19764), (6) Evans & Hochmuth (1976b), (7) William-
son et al. (1975).
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